2019 CSCE Annual Conference - Laval (Greater Montreal)

2019 CSCE Annual Conference - Laval (Greater Montreal) Conference

Seismic Collapse Safety Assessment of Concrete Beam Column Joints Reinforced with Different Shape Memory Alloy Rebars

Return to Session

Dr. AHM Muntasir Billah, Lakehead University (Presenter)
Mrs. Mumtasirun Nahar, Military Institute of Science and Technology

In recent years, shape memory alloy (SMA) have drawn significant attention and interests among researchers and structural engineers for diverse civil engineering applications. Superelasticity, shape memory effect, and hysteretic damping, are the three major attributes of SMAs that make them ideally suited for applications in concrete frames. Among different compositions of SMA, Nickel-Titanium (NiTi) SMA has gained much attention for its superior mechanical and thermal performance over other compositions. However, the high cost and low machinability restricts the widespread use of NiTi SMAs in structural applications. Recently, several compositions of SMAs have been developed, such as Fe-based and Cu-based SMAs, which offer significantly lower cost and superior machinability compared to commonly used NiTi SMAs. The objective of this study is to evaluate the comparative seismic collapse safety of concrete beam-column joints reinforced with five different SMAs. The beam-column joint is assumed to be part of a seven storey moment resistant frame building located in Dhaka, Bangladesh. Fragility analysis will be conducted considering uncertainty in the material properties and as well the seismic hazard of the site location. A total of 20 near fault and far field ground motions will be considered for developing the collapse fragility curves. The collapse vulnerability of the five different SMA-RC beam-column joints will be evaluated interms of maximum inter-storey drift as the demand parameter as well as through development of collapse margin ratios.