2019 CSCE Annual Conference - Laval (Greater Montreal)

2019 CSCE Annual Conference - Laval (Greater Montreal) Conference


Title
Elastic buckling behaviour of ?-shaped rack columns with patterned holes under compression


Author(s)
Mr. Peng Zhang, The University of British Columbia (Presenter)
Dr. Shahria Alam, University of British Columbia
Abstract

Rack columns are generally made of thin-walled steel sheets, and the steel sheets are cold-formed into the desired cross-sections. The columns are utilised to form upright frames of a storage system and serve as compression members. Currently, the theoretical and experimental investigations of the buckling behaviour of ?-shaped rack columns with patterned holes are rare, and the analytical design solutions for predicting the compression capacity of these columns are not mature yet. This paper presents a theoretical study of the elastic buckling behaviour of rack columns under uniaxial compression, and three different ?-shaped cross-sections were investigated. The columns without holes are studied first; then, patterned holes are considered for the columns. Buckling curves and signature curves of the columns are generated by using a finite element software, ANSYS 18.1, and two different boundary conditions, i.e., simple-simple and clamp-clamp are considered. The buckling curves of the rack columns with holes, under the boundary condition of pinned-pinned, are generated as well.  Three problems are mainly addressed here: (1) how to generate the signature curve of rack columns (without holes) by using conventional finite element programs (e.g., ANSYS); (2) what are the differences between the buckling behaviour of the columns with and without holes; (3) how to determine the critical buckling loads and critical buckling half-wavelengths of rack columns with holes accurately.