2019 CSCE Annual Conference - Laval (Greater Montreal)

2019 CSCE Annual Conference - Laval (Greater Montreal) Conference


Title
Comparison among Project Delivery Methods for Scattered Rehabilitation Projects

Return to Session

Author(s)
Mr. Ehab Kamarah, York University
Dr. Mohamed Attalla, University of Illinois (Presenter)
Dr. Tarek Hegazy, University of Waterloo
Abstract

Public-Sector organizations such as School Boards and Universities administer a large number of facilities that involve thousands of assets at various ages and require extensive yearly rehabilitation and capital renewal programs. Since these rehabilitation programs involve hundreds of small repetitive works that are scattered in many locations, organizations are struggling to deliver these programs on time and on budget, to keep their facilities operational, despite suffering from billions of dollars in rehabilitation backlog. While significant efforts in the literature have been dedicated to decide the components to include in rehabilitation projects, fewer efforts address the delivery phases of such projects. Existing project management systems exhibit serious drawbacks, not only in considering the scattered multi-location nature of the work, but also in scheduling and tracking the progress of the large number of small subprojects involved. Moreover, existing delivery methods consider each subproject separately and deprive owner organizations from benefiting from repetition to achieve significant cost savings. In an effort to improve the project delivery practices of infrastructure rehabilitation projects, this paper investigates the most suitable project delivery method that suits scattered repetitive projects. The paper highlights the drawbacks of common delivery methods and suggests specific requirements for an efficient project delivery method for scattered rehabilitation projects. The guidelines suggested in the paper supports decision makers at public organizations to optimize the contractual and execution environments of the costly and very constrained infrastructure rehabilitation programs