2019 CSCE Annual Conference - Laval (Greater Montreal)

2019 CSCE Annual Conference - Laval (Greater Montreal) Conference


Title
Impact of Flooding on Concrete Pavement Performance


Author(s)
Mr. Oluremi Oyediji, University of Waterloo (Presenter)
Dr. Susan Tighe, CPATT - University of Waterloo
Abstract

Abstract

Pavement infrastructures have become vulnerable to damage as they were not designed to withstand the aggressions of extreme weather events such as flooding, induced by climate change. In Ontario, flooding tops the list of climate change hazards having a consequential impact on pavement performance. Rigid pavements are recorded to provide resilience to flood hazard in literature but knowledge about its behaviour and response to flood impact is currently scarce. The objective of this study is to investigate the impact of flood hazards on the performance of concrete pavement examining a case study of Jointed Plain Concrete Pavement (JPCP) road classes in Ontario. A literature review of pavement flood impact and analysis of flood-induced distresses in concrete pavement is carried out. Subsequent to this, the Mechanistic-Empirical Pavement Design Guide (MEPDG) was employed to simulate JPCP performance under climate change using a conservative Representative Concentration Pathways (RCP) of 4.5W/m2. Only flood depth, duration and event cycles were used to define flood loading. Typical representative designs of JPCP collector and arterial road classes in the province were chosen and modelled. The result indicated lower damage ratios and loss of pavement life based on changes in faulting and International Roughness Index (IRI). Increases in flood frequency resulted in additional damages and loss of pavement performance and analysis showed that arterial pavement was more resilient to flood damage than collector pavements. Inference is that concrete pavements may significantly not have their life shortened at lower cycles of extreme precipitation. However, at higher frequencies of extreme precipitation, damage may increase and resilience to flood hazards in JPCP pavement altered. 

Keywords

Climate Change, Flooding, Concrete Pavement, Jointed Plain Concrete Pavement, Pavement Design