2019 CSCE Annual Conference - Laval (Greater Montreal)

2019 CSCE Annual Conference - Laval (Greater Montreal) Conference


Title
Residual flexural strength of corroded reinforced concrete beams

Return to Session

Author(s)
Dr. Luaay Hussein, Ryerson University
Dr. Lamya Amleh, Ryerson University (Presenter)
Ms. Hesham Othman, Ryerson University
Abstract

Corrosion of steel reinforcement in concrete has been regarded as a major problem in reinforced concrete structures, greatly shortening the service life and increases the maintenance cost of the structure. Thus, corrosion of steel reinforcement should be a great concern for materials and bridge engineers when designing new reinforced concrete structures and/or when evaluating the residual strength of existing reinforced concrete structures.

Several researchers studied experimentally and proposed numerical and analytical models to predict the flexural capacity of corroded reinforced concrete structures. However, some discrepancies between the analytical models and the actual experimental values have been observed. Moreover, all these models have their own limitations and drawbacks.  The drawback is that the results are highly dependent on the specific structural considerations or depends on complicated bond models that require a lot of calculations. Therefore, it’s very important to propose a simple model that can be used by engineers to estimate the residual flexural strength of corroded reinforced concrete beams.

This paper presents a simple model that can be used to predict the residual flexural strength of reinforced concrete beams with varying degrees of reinforcement corrosion. The model accounts for the deterioration of bond strength at steel-concrete interface due to corrosion. The moment resistance method which is based on flexural analysis of reinforced concrete beams that considers the effect of bond deterioration was adopted. The results of the proposed model were validated by comparing the model with experimental results obtained by several researchers. The new proposed model in this study was able to successfully predict the residual flexural strength of corroded reinforced concrete beams.