2019 CSCE Annual Conference - Laval (Greater Montreal)

2019 CSCE Annual Conference - Laval (Greater Montreal) Conference


Title
ArcSPAT: An integrated BIM-GIS model for site layout planning

Return to Session
BIM

Author(s)
Mr. Ahmad Alsaggaf, University of Ottawa (Presenter)
Dr. Ahmad Jrade, University of Ottawa
Abstract

Site layout planning (SLP) is an essential step for having a productive, efficient and safe construction environment. A well-planned construction site helps in increasing the productivity and safety of construction operations and in reducing the overall cost and duration of construction projects. The main purpose of SLP is to manage the available spaces on construction sites and to select the most appropriate location for placing temporary facilities (TF) needed to complete a project by considering all constraints that exist between different TFs and their relationships to permanent facilities (PFs). Due to the wide range of factors and variables and the complexity included in the process of site layout planning, most of the models discussed in the literature provided solutions to the site layout planning based on wide variations in their scopes, objectives, and approaches.  As a result, authors were not able to find in the literature a complete solution to site layout problems. This paper proposes an integrated BIM-GIS methodology to develop a comprehensive, flexible, and practical SLP model to assist professionals to make informed decisions and apply their knowledge to solve the problems associated with the SLP’s process. It will also, highlights the potential of providing alternatives that may lead to a unified solution for SLP, which accommodates solutions supplied by other models presented in the literature that serves as a foundation to solve future problems through a more detailed research in this area. The proposed model consists of six modules, 1) a 3D modeling module, which links both BIM and GIS tools; 2) a route planning module that estimates the number of trucks (RPENT) for loading and hauling; 3) an execution schedule time entry (ESTE) module that facilitates the daunting and time-consuming process of creating a 4D model; 4) a 4D modeling module, that simulates the construction progress and helps in placing the TFs on the right locations on site ; 5) a temporary facilities library (TFL) module, which is developed to facilitate the selection of TFs, modeling and planning the construction site; and 6) a dynamic conflict detection (DCD) module that uses a smart detection tool to forecast potential conflicts and clashes on a construction site that would notify users about detected conflicts through an automatically generated report holding detailed information. The proposed model will assist site planners in planning construction sites that are safer, closely free of conflicts and that would reduce the project’s overall cost.