2019 CSCE Annual Conference - Laval (Greater Montreal)

2019 CSCE Annual Conference - Laval (Greater Montreal) Conference

Fall Prevention Supplementary Devices for Bridge Construction Workers: A Life Cycle Cost Analysis

Return to Session

Dr. Ahmed Al-bayati, Western Carolina University (Presenter)
Dr. Aslihan Karatas, Lawrence Technological University
Mrs. Jeanette White, Southwestern Community College

Construction workers along bridge decks or overpasses have experienced a substantial number of fatal and non-fatal injuries in the United States. An investigation of fall prevention along the bridge decks reveals the existing guardrail barriers do not meet the required height that needed to provide adequate fall protection for construction workers. Therefore, fall protection supplementary devices (FPSDs) must be temporarily or permanently installed to prevent fall injuries. There are several options of FPSDs that could be installed by construction crews. The current study conducts a life cycle cost analysis (LCCA) of two FPSDs options that could be utilized to extend the existing guardrails’ barrier height. The two options are (1) installing temporary barrier protection along the existing guardrails to increase the barrier height to an acceptable level, and (2) Installing fixed anchor points or sliding rail connections along the bridge deck guardrail. As for the first option, the Bodyguard Rail - clamp CC120 and the Master Clamp MCC130 have been identified as being most compatible with over 80% of all existing bridge deck guardrail barriers which are the concrete New Jersey Barrier Rail, and the Aluminum 1-Bar Metal Guardrail. On the other hand, the second option requires construction workers to use full-bodied harnesses and connect to the permanently installed anchor point or sliding rail. Accordingly, both options of fall protection have been compared on a similar basis to adequately compare the life cycle cost (LCC). The two options were equated to a total cost per 100 linear feet (LF) of installation, and both options were assumed to be installed over a full year of need. Therefore, all associated costs were included in the estimation such as material costs, competent person installation/labor cost, and yearly inspection and repair costs. Accordingly, the LCCA reveals the fixed anchor as the most economical choice. Although the fixed anchor has a higher initial annual cost, this option has a minimal repetitive annual cost. Finally, further investigation should be conducted to compare the compatibility of the suggested options with the practices and conditions of the workplace.