2019 CSCE Annual Conference - Laval (Greater Montreal)

2019 CSCE Annual Conference - Laval (Greater Montreal) Conference

Wind-induced pressure for Silsoe cube tested in the wind-induced damage simulator

Return to Session

Mr. ZHE XIAO, University of Ottawa (Presenter)
Dr. Elena Dragomirescu, University of Ottawa

Wind-induced pressure for Silsoe cube tested in the wind-induced damage simulator

University of Ottawa

Zhe Xiao, Elena Dragomirescu

A new wind testing facility, the Wind-induced Damage Simulator (WDS), was designed and built at the University of Ottawa. The new facility is capable of generating extreme wind conditions and can achieve high pressure testing environment for scaled models as well as full scale structural elements such as: roofs, windows and curtain walls. The WDS system has total dimensions of 3.65 m x 3.65 m x 3.0 m and has 20 circular inlet openings on the four lateral walls. The outlet of the box with a diameter of 300 mm, is at the center of roof and it is connecting to a powerful industrial blower through a steel made duct. A model of the Silsoe cube, which is a basic shape structure was built with 1:40 scale to the 6m full scale Silsoe cube and a total of 42 pressure taps were installed on its surface. Pressure measurements were performed for up to 40 m/s in unidirectional and shear flow conditions determined by activating the first or the second inlet at a corner of the WDS. Also different positions of the Silsoe cube model were investigated for determining the optimum testing section for the WDS. Results comparison with pressure distribution obtained in a wind tunnel for a similar Silsoe cube dimensions showed that for certain arrangements the WDS induced pressure was similar with the wind tunnel tests. Also for verifying the WDS design concepts, CFD simulations of the flow acting on the Silsoe cube was performed for the same wind speed as well as the same inlet activation conditions. Good agreement was obtained between the pressure measurement recorded in the WDS experimental facility and the CFD simulation modelled with the LES, for the Silsoe cube with the same dimensions.

Key words: Wind-induced pressure, Silsoe cube model, Wind-induced damage simulator, CFD simulation